A fast marching algorithm for the factored eikonal equation
نویسندگان
چکیده
منابع مشابه
A fast marching algorithm for the factored eikonal equation
The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at ...
متن کاملFast sweeping method for the factored eikonal equation
We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and...
متن کاملA second - order fast marching eikonal solver
Unfortunately, first-order implementations lead to inaccuracies in computed traveltimes, which may lead to poor image focusing for migration applications. In addition, first-order traveltimes are not accurate enough for reliable amplitude calculations. This has lead to the development of the fast marching method on non-Cartesian (Alkhalifah and Fomel, 1997; Sun and Fomel, 1998), and even unstru...
متن کاملA Third Order Accurate Fast Marching Method for the Eikonal Equation in Two Dimensions
In this paper, we develop a third order accurate fast marching method for the solution of the eikonal equation in two dimensions. There have been two obstacles to extending the fast marching method to higher orders of accuracy. The first obstacle is that using one-sided difference schemes is unstable for orders of accuracy higher than two. The second obstacle is that the points in the differenc...
متن کاملConvergence of a Generalized Fast Marching Method for a non-convex eikonal equation
We present a new Fast Marching algorithm for a non-convex eikonal equation modeling front evolutions in the normal direction. The algorithm is an extension of the Fast Marching Method since the new scheme can deal with a time-dependent velocity without any restriction on its sign. We analyze the properties of the algorithm and we prove its convergence in the class of discontinuous viscosity sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2016
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2016.08.012